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Abstract We consider the 2D quenched–disordered q–state Potts ferromagnets and show
that in the translation invariant measure, averaged over the disorder, at self–dual points any
amalgamation of q − 1 species will fail to percolate despite an overall (high) density of
1 − q−1. Further, in the dilute bond version of these systems, if the system is just above
threshold, then throughout the low temperature phase there is percolation of a single species
despite a correspondingly small density. Finally, we demonstrate both phenomena in a single
model by considering a “perturbation” of the dilute model that has a self–dual point. We
also demonstrate that these phenomena occur, by a similar mechanism, in a simple coloring
model invented by O. Häggström.

Keywords Percolation · Potts model · Critical phenomena

1 Introduction

The purpose of this note is to address the question of whether there are “natural” translation
and (lattice) rotation invariant ergodic measures on configurations η ∈ {0,1}Z

d

, d ≥ 2, for
which site percolation occurs when the density of occupied sites, ρ = 〈ηi〉, is very close to
zero and/or fails to occur if the density is close to one. It is known that neither phenom-
enon occurs for systems with product measures (independent percolation) [14, 16], where,
in most situations, there is a sharp percolation transition when ρ−1 is of the order of the lat-
tice coordination number (e.g. 2d). The question then is what happens when the occupancy
of different sites is specified in some natural way which is not independent. Of particular

L. Chayes
Department of Mathematics, UCLA, Los Angeles, CA, USA

J.L. Lebowitz
Department of Mathematics, Rutgers University, New Brunswick, NJ, USA

V. Marinov (�)
Department of Physics, Rutgers University, New Brunswick, NJ, USA
e-mail: marinov@physics.rutgers.edu



568 J Stat Phys (2007) 129: 567–585

interest are equilibrium spin–systems and non-equilibrium stationary states of interacting
particle systems such as the voter model, the contact process and their various generaliza-
tions [22]. Furthermore, one may also consider projections of such measures, i.e. given a
measure on [�]Zd

, where σi ∈ � is the set of possible states at i ∈ Z
d , we define an occu-

pation variable ηi = 0,1 , with ηi = 1 if σi ∈ �1 and ηi = 0 if σi ∈ � \ �1. Well known
examples are the fuzzy q-state Potts model with q = r + s and ηi = 1 if σi ∈ (1, . . . , r), and
systems where σi ∈ R, and ηi = 1 if σi ≥ h and zero otherwise [8, 11, 18].

Adams and Lyons [1] considered these types of question for measures on homogeneous
trees that are invariant under the graph automorphisms. They found that whenever the den-
sity is large enough there indeed is percolation, see also [17] and [7]. Such a result does not
hold for Z

d ; it is easy to construct counterexamples which exploit, in an obvious way, the
vanishing surface to volume ratio of regular sets [14]. Also, for d = 2 one may consider the
infinite cluster of supercritical independent percolation near threshold and simply declare
the complimentary sites to have η1 ≡ 1; these complimentary sites will have density close
to one and fail to percolate. Higher dimensional analogs may even be possible, albeit at dif-
ferent thresholds (cf. [3]) and the converse phenomenon can also be constructed by these
means: Consider a slightly super–critical percolating cluster and declare its compliment to
be vacant (ηi ≡ 0). While such examples are not particularly interesting in their own right,
they demonstrate the existence of mechanisms for these phenomena which might occur in
more realistic systems.

Along these lines, a more interesting set of examples concern the so–called divide and
color (DaC) models invented by Häggström [19]. As we will show, for these models in d = 2
there are no density limitations for the absence or presence of percolation. But even the DaC
models are a bit artificial and one should ask whether there are more natural examples where
such phenomena can occur.

In this note, the principal system under study is the 2D disordered Potts ferromagnet. First
we will demonstrate that at self–dual critical points, there is an absence of percolation de-
spite a density which may be arbitrarily close to one. The complimentary result, namely per-
colation at small density would follow immediately from continuity of the magnetization—
a currently open and challenging problem. (We will state some inconclusive results con-
cerning this question.) However, almost trivially, the diluted versions of the disordered Potts
models exhibit this property throughout the low temperature phase (i.e. when the magnetiza-
tion is positive) provided the media itself is near threshold; we will provide a formal proof.
Finally we will combine the two sets of results via the consideration of models with strong
and weak interactions. These models inherit enough of the features of the dilute model to
display the small density percolation property yet, unlike the dilute models, can have a self–
dual point.

Most of the above stated results are proved in the context of a fixed realization of the
disorder. However, since any particular realization is not translation invariant we do not
satisfy the naturalness criterion that was stated at the beginning of this section. Therefore
we will consider the entire problem from the perspective of the quenched measures. These
objects are manifestly translation invariant and we will demonstrate various other amenable
properties, such as strong mixing.

The remainder of this paper is organized as follows: In Sect. 2 we define the DaC mod-
els and, thereafter, we state and prove our results for this system. In Sect. 3, we define the
general quenched disordered Potts ferromagnets but with the emphasis on d = 2. We define
the quenched measures for these systems; certain general properties of these quenched mea-
sures are stated (with the proofs postponed). We then prove our main results: (i) At certain
self–dual critical points, any one of the species is sufficient to prevent percolation of the
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combined efforts of all the others. (ii) For the dilute model, with the active bonds in slight
excess of the percolation threshold, there is a non–trivial low temperature phase character-
ized by the percolation of just one of the species notwithstanding (for q � 1) the paucity
of the overall density of this species. Finally we construct a weak–bond/strong–bond disor-
dered model with a self–dual point and, at least in the vicinity of the transition temperature,
a regime of percolation at low density. In the next section, we will provide some discussion
and finally, in the appendix, we prove the stated properties of the quenched measures in the
disordered Potts systems. For further background discussion, see [14] Sect. 5.2.

2 Critical 2D DaC Models

2.1 Definitions

On the “graph” Z
2 let p ∈ [0,1], q an integer ≥ 2 and let λ1, . . . λq be in (0,1) with∑

q λq = 1. The relevant measure, which we denote by μp,λ (with λ = (λ1, . . . λq)) is de-
fined as follows: Each edge is occupied (or vacant) independently with probability p (and
(1 − p)). For each given configuration of edges, the finite connected clusters of sites are
independently “colored” in one of q ways with respective probabilities λ1, . . . λq . If the
bonds do not percolate, then the model has been defined. If there is percolation, p > pc = 1

2 ,

one can define q distinct “extremal” measures, μ
[j ]
p (λ1 . . . λq), where the infinite cluster is

assigned the j th color and convex combinations may be chosen according to any desired
prescription. The extreme measures can be justified/constructed via the limit of finite vol-
ume arrangements wherein the boundary of the region is deemed to be of the particular color
chosen.

Despite its somewhat artificial appearance, the DaC model has some interesting features
(not discussed in the present work) and in fact can actually be realized in a number of cir-
cumstances. In particular, for λ1 = · · · = λq it is the zero temperature limit of the random
diluted q-state Potts model that will be featured in the next section. Further, if one constructs
the q-state diluted voter model, with an initial distribution that is a priori equal and inde-
pendent it is not hard to see (e.g. by the methods of [22] Chap. V) that the infinite time limit
of this setup is precisely the DaC with corresponding p and λ1 = · · · = λq .

2.2 Statements and Proofs

Our first theorem, the key parts of which are actually contained in [19], reads as follows:

Theorem 2.1 For all λ1 ∈ (0,1), the measures μpc,(λ1,λ2) have, with probability one, no
(connected) site percolation or ∗-connected site percolation for either of the species.1

Remark 1 We remark that the case of interest in the present work is when one of the λ’s is
small; the setup in [19] was the completely symmetric p = λ1 = λ2 = 1

2 . We further remark
that by the obvious method of aggregating colors, the above extends to versions of the DaC
with more colors. In particular, with q species, the union of any of the q −1 species is denied
percolation by the single remaining color.

1∗-percolation means an infinite cluster under the relaxed rules that neighbors or next nearest neighbors are
considered connected.
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Proof The critical bond percolation model on Z
2 has the key feature that there are infinitely

many closed circuits of occupied bonds surrounding the origin and infinitely many closed
circuits of dual bonds—edges on (Z + 1

2 )2—traversal to the vacant bonds surrounding the
origin [16]. Since the latter separate the former, it is evident that there are infinitely many
disjoint and separated occupied bond circuits surrounding the origin each of which belong
to clusters of color type 1 or color type 2 with respective probabilities λ1 and λ2. This rules
out the possibility of the origin belonging to an infinite connected or even ∗–connected
cluster of either type. �

The above theorem is complimented by the situation above threshold:

Theorem 2.2 For every ε > 0 there is a region of p > pc and λ1 such that μ
[1]
p,(λ1,λ2) has

percolation of the first color but the overall density of the first color is less than ε.

Proof Consider the measure μ
[1]
p,(λ1,λ2) with p (only slightly) in excess of pc . It is clear, by

conditioning on the events that a particular site does and does not belong to the infinite bond
cluster, that the color 1 density is given by P∞(p) + λ1(1 − P∞(p)). Here P∞(p) denotes
the fraction of sites belonging to the infinite cluster of the bonds. Since, for the 2d bond
problem, P∞(p) is known to vanish continuously [24] the result follows. �

3 Disordered Potts Ferromagnets

3.1 Background Considerations

We let {Ji,j | i, j neighbors in Z
2} denote a collection of iid non–negative random variables

with common distribution F not concentrated at a single point; we emphasize that we may
allow Ji,j = 0 with non–zero probability, a case we will refer to as dilution. The bond–
random Potts model is defined, for fixed realization of the (Ji,j ), by the formal Hamiltonian

−H = −HJ =
∑

〈i,j 〉
Ji,j δσi ,σj

, (3.1)

where 〈i, j〉 denotes nearest neighbors, J represents the collection (Ji,j ) and σi ∈ {1, . . . q}
are the spin–variables associated with the sites of Z

2. Most often, we will absorb the usual
temperature parameter into the definition of J.

For fixed J in a finite volume 	, the Gibbs measures with specified boundary conditions
are defined in the usual fashion. E.g. if 	 ⊂ Z

2 and the boundary ∂	 has fixed boundary
spins σ∂	, we may write

P
σ∂	

J;	(σ	) = e−HJ(σ	|σ∂	)

Z
σ∂	

J;	
, (3.2)

where HJ(σ	 | σ∂	) denotes the object in (3.1) restricted to i and j in 	 ∪ ∂	, σλ and σ∂λ

are notations for the collections of spins on these respective sites and the spins σ∂λ are to be
considered as fixed, Z

σ∂	

J;	 is the partition function which normalizes P. Of exclusive interest
in this work are the one ([1]) and free ([f]) boundary conditions. The former case is defined
by simply setting all of σ∂λ to be in the first spin state. (Since the Hamiltonian is com-
pletely symmetric under permutations of spin–states, all results concerning [1]–boundary
conditions apply equally well to the (q − 1) others that are defined similarly.) The latter is
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described by the stipulation that Ji,j is set to zero whenever i ∈ 	 and j ∈ ∂	. Infinite vol-
ume thermodynamics is defined via the partition function in the usual way. All the standard
thermodynamic functions (and their derivatives with respect to external fields) emerge as al-
most sure quantities which are independent of boundary conditions; cf. [15] and references
therein.

For finite volume, the quenched measures are defined by averaging the probabilities in
(3.2) over all realizations of the interactions according to

∏
〈i,j 〉 dF(Ji,j ) (written as dF )—

where the product runs over the appropriate set, usually i and j in 	 ∪ ∂	. These averaged
objects will be referred to as the finite volume quenched measures and denoted by Q

�

F ;	
with the superscript denoting one of the two types of boundary conditions described. As
far as infinite volume limits are concerned, there are two alternative scenarios: (1) for fixed
J take 	 ↗ Z

2 and (somehow) average the resultant measure over J. (2) Take the (vague)
infinite volume limit of the finite volume quenched measures described above. It turns out
that for the pertinent cases at hand, the order of the procedures is immaterial and the result
is independent of how 	 ↗ Z

2. We will provide a brief sketch of how this is established in
the Appendix.

Below we summarize our claims concerning these quenched measures.

Proposition A1 Consider the Hamiltonian in (3.1). For all F satisfying the ferromagnetic
condition, that is Ji,j ≥ 0 with probability one, the limiting measures

Q
[1]
F = lim

	↗Z2
Q

[1]
F ;	 (3.3)

exists (independently of how 	 ↗ Z
2) and similarly for Q

[f ]
F . Furthermore, the measures

Q
[1]
F and Q

[f ]
F are invariant under Z

2 shifts—as well as other Z
2 symmetries.

Proposition A2 Consider the Hamiltonian in (3.1). If μ
[1]
J

and μ
[f ]
J

are limiting Gibbs
measures (which also exist independently of how the infinite volume limit is taken) then
the average of these measures is well–defined and equal to their respective Q counterpart.
Finally, if F is such that the spontaneous magnetization as defined thermodynamically (or as
will be discussed subsequent to (3.9)) is zero then the limiting quenched measure—satisfying
all properties of Proposition A1 above and A3 below—is unique.

Proposition A3 The limiting measure Q
[1]
F satisfies the strong mixing condition. So, in par-

ticular, if the magnetization vanishes the unique measure is strongly mixing.

While most likely these are non–Gibbsian measures, as is evidenced by the result in [28]
on a related system, they are physically motivated and, possibly, experimentally accessible.
Notwithstanding, at self–dual points (and presumably at other critical points) the combined
efforts of species 2 through q will fail to achieve percolation in spite of their high density.
Furthermore in the dilute case (and related cases) despite a low density, the type–1 spins
can, on their own, achieve percolation in the Q

[1]
F -measures.

3.2 Statement of Main Results

For 0 < J < ∞, the dual coupling is defined by

J ∗(J ) = log

(

1 + q

eJ − 1

)

(3.4)
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and the dual model is defined by the assignment of the coupling J ∗(Ji,j ) ≡ J ∗
i,j to the bond

〈i∗, j ∗〉 of the dual lattice (Z + 1
2 )2 that is traversal to the bond 〈i, j〉. A model is self–dual2

if

dF(Ji,j ) = dF(J ∗
i,j ). (3.5)

Our result on the bond–random Potts ferromagnets reads as follows:

Theorem 3.1 Suppose that for the ferromagnetic bond strength distribution F , in both the
direct and the dual model, the spontaneous magnetization vanishes. Then, with probability
one, in the (unique) limiting quenched measure there are infinitely many circuits surrounding
the origin such that the spin–type is constant throughout the circuit and, moreover, there are
infinitely many such circuits of each spin–type. In particular, there is no percolation (or even
∗–percolation) in the various marginal measures which identify as many as (q − 1) of the
spin–states as a single state notwithstanding that the density of this amalgamation is 1 − 1

q
.

Corollary 3.2 For a 2D disordered Potts model at a point of self–duality, the (hypotheses
and) conclusions of Theorem 3.1 hold.

Our next result concerns situations which do have percolation:

Theorem 3.3 Consider the dilute model with parameters a and β defined by Ji,j = β with
probability a and zero otherwise. If a > 1

2 there is a βc < ∞ such that for all β > βc , the
magnetization m(β,a), given for [1] boundary conditions by the excess density of species 1
above 1

q
, satisfies the inequalities

0 < m(β,a) < P∞(a), (3.6)

where P∞(a) is the percolation probability in the independent bond–model on Z
2. In par-

ticular, for all β > βc , in the measure Q
[1]
F , there is (with probability one) an infinite cluster

of species 1 while the overall density of this species is m(β,a) + 1
q

≤ P∞(a) + 1
q

; by con-

sidering large q and a close to 1
2 , this density can be made as small as desired.

Both features may be exhibited in a single model:

Theorem 3.4 Let a ∈ (0,1) and K denote a bounded random variable satisfying K ≥ b

with probability one with b considered “large”. Consider a disordered Potts ferromagnet
with strong and weak bonds: Suppose that for each 〈i, j 〉, with probability a, Ji,j is equal, in
law, to K while otherwise, with probability (1 − a), it is equal in law to J ∗(K). Then for b

large, the magnetization is very nearly P∞(a) and the overall density in the measure Q
[1]
F is

very nearly P∞(a)+ 1
q

. Since the model is self–dual at a = 1
2 , both the high and low density

percolative phenomena occur as the parameter a passes through 1
2 .

2For models that do not respect all of the Z
2 symmetries, a more general definition of self–duality is possible

e.g. the vertical bonds distributed as the dual of the horizontal bonds and vice versa. While most of our results
go through easily in these cases, we make no further reference to these extensions since the present purpose
is to construct “natural measures” on Z

2.
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3.3 Graphical Representations, Dual Models and Dominations

For 〈i, j〉 a neighboring pair let us define

Ri,j = eJi,j − 1. (3.7)

As is well known [13] the model admits the random cluster representation: In finite volume,
if ω is a configuration of occupied and vacant bonds (or edges) the probability of ω is given
by

P�

J;	(ω) ∝
∏

〈i,j 〉∈ω

Ri,j q
c�(ω), (3.8)

where 〈i, j〉 ∈ ω represents the event that the particular bond is occupied and c�(ω) denotes
the number of connected components which are counted by rules (�) in accord with condi-
tions specified at the boundary: � = [1] and � = [f ]. In the former case—sometimes called
the wired measures—c[1](ω) counts all clusters that are attached to the boundary as part of
the same connected component while c[f ](ω) simply counts the number of components in ω

by the conventional definition. Given these random cluster measures, it is possible to write
down the conditional probabilities of spin configurations given a bond configuration. This
is done by insisting that the spin–value is constant throughout each component of ω and,
except for the components attached to the boundary, assigning the spin–types to each com-
ponent independently and with equal probability. As for the boundary component, in so far
as concerns the two setups in this work, the procedures are simple: For [f ], nothing special
is done—all boundary components are treated like the internal components. For the wired
or [1] case, all components of the boundary are set to the first spin–state. Thus, for example,
the finite volume magnetization at the origin for specified J is given by

mJ;	(0) ≡ E
[1]
J;	(δσ0,1) − 1

q
= P[1]

J;	({0 ↔ ∂	}), (3.9)

where {0 ↔ ∂	} is the event that the origin is connected to ∂	 by an occupied path. The
average magnetization at the origin m̄

[1]
	 (0) is obtained by averaging (3.9) over F . The in-

finite volume spontaneous magnetization m̄[1](0) is obtained by taking the limit 	 ↗ Z
d of

m̄
[1]
	 (0). We call m̄[1](0) the spontaneous magnetization of the system.
To conclude: on the basis of (3.9) the magnetization at the origin is non–zero in any given

quench (realization) if and only if the right hand side does not tend to zero as 	 ↗ Z
2;

i.e. percolation and spontaneous magnetization are synonymous. That the limiting percola-
tion density exists (with or without the quenched average) is well known and anyway can be
derived on the basis of what is discussed later. The fact that percolation probability is equal
to the thermodynamically defined spontaneous magnetization has been proved elsewhere,
see [15] and references therein, as well as [5] and [4].

In finite volume, the dual model is defined as follows: If 〈i, j〉 is an edge of Z
2, let 〈i∗, j ∗〉

denote the corresponding edge of (Z + 1
2 )2 and let

R∗
i∗,j∗ = q

Ri,j

(3.10)

which is the equivalent to (3.4) via (3.7). For a finite 	 ⊂ Z
2—with 	 regarded as a graph—

consider the dual graph, 	∗ consisting of all (dual) edges corresponding to the (direct) edges
in 	 and the collection of (dual) sites which are the endpoints of these dual edges. As is well
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known, the model on the dual graph with parameters R∗
i∗,j∗ has configurations which are in

one-to-one correspondence with (and have the same probabilities as) the original setup on 	.
Of course, some attention must be paid to the conditions at the boundary. All that is needed
in this work is the readily verified fact that the model with wired boundary conditions on
	 associates with the model with free boundary conditions on 	∗ and vice versa. We will
refer to the initial model as the direct model and the induced distribution for the J ∗

i∗,j∗ —
collectively denoted by J

∗—by F ∗. Of course when it comes to integration, we may use the
“direct” dF .

A model is said to be self–dual if the probability distribution of the {J ∗
i,j } is the same as

that of original, e.g. (3.5), or equivalently,

Ri,j =d

q

Ri,j

. (3.11)

The “nicest” examples concern a self–duality which is achieved according to a temperature
parameter, in which case one can speak of the self-dual temperature β̄ , cf. (30) in [12], but
this will not be necessary in the present work.

For the sake of completeness, let us recapitulate in brief (special cases of) the domination
arguments that were derived in [4, 5]. For a fixed bond 〈i, j〉 in finite volume with free
or wired boundary conditions, let us calculate the conditional probability that the bond is
occupied. It is not hard to see that this is exactly

pi,j = Ri,j

1 + Ri,j

(3.12)

if {i ↔ j} while the probability is

peff
i,j = Ri,j

q + Ri,j

= pi,j

pi,j + q(1 − pi,j )
(3.13)

if the endpoints are not connected. (In the former, the number of components is unaffected
while in the latter, it is reduced by one.) It therefore follows from elementary considerations
that for each quench, the random cluster measures—wired or free—dominate the indepen-
dent bond measures at parameters peff

i,j and are dominated by independent bond measures
with parameters pi,j . The ease of calculating quenched averages of independent bond mea-
sures (percolation on percolation) is what lead to the asymptotically sharp results of [4].
Indeed, as is already seen, when the relevant R–parameter is large compared with q , the
upper and lower estimates do not differ by much.

3.4 Proofs of Main Results

We start with a preliminary result which is most of what is needed for the proof of Theo-
rem 3.1.

Proposition 3.5 Let F denote a distribution of couplings such that the spontaneous magne-
tization of the dual model is zero. Then with probability one for both Q

[1]
F and Q

[f ]
F there are

infinitely many circuits surrounding the origin such that, within each circuit, the spin–type
is constant.
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Proof Let ε > 0 and let Ṽ ⊂ Z
2 denote a finite set containing the origin. Let 	̃ ⊃ Ṽ and

DṼ ,	̃ denote the event

DṼ ,	̃ = {σ | ∃ a circuit of constant spin–type separating ∂Ṽ and ∂	̃}, (3.14)

where by circuit it is meant a graph theoretical “cycle” of vertices. Then, as we shall see,
it is sufficient to prove (for arbitrary fixed Ṽ and ε) that Q

[f ]
F (DṼ ,	̃) > 1 − ε whenever

	̃ is sufficiently large, and similarly for Q
[1]
F . We let V —and 	—denote sets similar to

their tilde counterparts enhanced by a layer or two at the boundary to avoid discussion of
inconsequential provisos caused by discrete lattice effects. Let 	∗ and V ∗ denote the dual
sets and let ϒ = ε

|∂V ∗| . Since the quenched magnetization in the dual measure vanishes
by hypothesis, for every i∗ ∈ ∂V ∗ the average magnetization at i∗ in the one–boundary
conditions in 	∗ (for the dual model) tends to zero as 	∗ gets large. Thus, in a large enough
volume, for all such i∗,

mF ∗;	∗(i∗) ≡
∫

dF E
[1]
J∗;	∗

(

σi∗ − 1

q

)

< ϒ. (3.15)

However, according to (3.9), the integrand is the probability, in the dual model, of a dual
connection between i∗ and ∂	∗. Thus

∫

dF P[1]
J∗;	∗({∂V ∗ ↔ ∂	∗}) ≤

∫

dF

[
∑

i∗∈∂V ∗
P[1]

J∗;	∗({i∗ ↔ ∂	∗})
]

≤ |∂V ∗|ϒ ≤ ε.

(3.16)
However, 1 − P[1]

J∗;	∗({∂V ∗ ↔ ∂	∗}) is the probability in the direct model of an occupied
circuit separating ∂V from ∂	 in the transformed boundary conditions. So we may write

∫

dF P[f ]
J;	({∃ occupied circuit separating ∂V and ∂	}) ≥ 1 − ε. (3.17)

But each spin realization associated with such a random cluster event has a circuit of the
stated type and we have obtained the desired result in finite volume with free boundary
conditions:

Q
[f ]
F ;	(DṼ ,	̃) ≥ 1 − ε. (3.18)

The result for infinite volume follows by monotonicity of the integrand in (3.17) in the sys-
tem size: As discussed in the appendix, for free boundary conditions, the integrand increases
when we consider the same event (involving ∂	) in a volume 	′ ⊃ 	. For wired boundary
conditions, the result follows because in any volume, the integrand increases if we replace
[f] by [1].

Now, to see that the above implies the presence of infinitely many circuits, let (	̃kṼk)

denote a sequence of shapes as above (which exhaust the lattice) and satisfy 	̃k−1 ⊂ Ṽk ⊂ · · ·
such that the probability of a circuit in the kth pair exceeds 1 − εk with

∑
k εk < ∞. By the

Borel–Cantelli lemma, with probability one, only a finite number of the prescribed circuits
fail to appear. �

Proof of Theorem 3.1 Since the dual magnetization vanishes we already have, according to
the previous proposition, the part concerning the infinitely many circuits. What is lacking is
a proof that these circuits are not all of the same spin–type (as would indeed be the case if the
spontaneous magnetization were positive). Now, using the fact that the direct magnetization
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also vanishes, we may demonstrate, along the lines of (3.16) through (3.18) that outside
any finite V but inside a sufficiently large 	 the average probability of observing the dual
of a circuit composed of vacant bonds is close to one—even with (direct) wired boundary
conditions.

The upshot, when both magnetizations vanish, is that even in finite volume, with high
probability many circuits of dual bonds and many circuits of direct bonds surround the given
V . Since both the direct and dual circuits can be constructed at an increasing sequence of
scales, it follows that some portion of these circuits separate each other. We are now, more
or less, in the same situation as Theorem 2.1 for the DaC model: There are many direct
rings separated from each other (and the boundary) by the dual rings. These direct rings are
therefore “at liberty” to take on any of the q spin–values. In particular for any s ∈ {1, . . . q}
and any finite V ,

Q
[1]
F ;	({∃ a circuit of spin–type s surrounding V }) −→ 1 (3.19)

as 	 ↗ Z
2. The result also holds in Q

[f ]
F ;	 (which anyway leads to the same limiting measure

as we show in Proposition A2). The conclusion is that with probability one, in the limiting
measure there are infinitely many circuits of all types surrounding the origin. This estab-
lishes the first claim. It also establishes the absence of percolation for any amalgamation–
alliance since an infinite path (connected or ∗–connected) of the alliance without the sth
spin–state, starting from the origin, is prevented by any of the sth state’s circuits, the pres-
ence of which has probability one. Finally, as is evident from the absence of magnetization,
the population density of all species is exactly 1

q
. �

Proof of Corollary 3.2 As was demonstrated in [12], Theorem 1′, the magnetization of the
disordered 2D Potts models vanishes at self dual points. This applies equally well to the dual
model. �

Proof of Theorem 3.3 This result is, to the largest extent, contained in [4] so we will be
succinct. In a given quench, each edge corresponding to a zero coupling bond adds nothing
to the ferromagnetism. The active bonds must be “reoccupied” (i.e. occupied in the random
cluster problem on this media) with a conditional probability bounded above by R/[1 + R]
and below by R/[q + R] where R = eβ − 1. The fraction of these reoccupied bonds that
belong to an infinite cluster (in the limiting [1]–state) constitute the magnetized fraction.
After performing a quenched average, it is seen that the magnetization is positive whenever

a
R

q + R
>

1

2
(3.20)

but is bounded above by P∞( aR
q+R

) < P∞(a). This is small and positive for all β large enough

and a close to 1
2 . The density of ones, in the one state is just this magnetization plus the

ambient 1
q

. �

Proof of Theorem 3.4 For simplicity we will treat just the case where with probability a,
R = eJ − 1 = eb − 1 ≡ B and with probability (1 − a), R = q/B . Obviously, for a = 1

2 , the
model is self–dual. To prove the remaining statements, we reiterate that

P∞(peff) ≤ m(B,a) ≤ P∞(p), (3.21)
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where, in general, peff = ∫
dF [R/(q + R)], etc. Thus it is sufficient to find B and a such

that both peff and p are in slight excess of 1
2 . In this simple case, we may write

peff = a
B

B + q
+ (1 − a)

1

1 + B
(3.22)

and

p = a
B

1 + B
+ (1 − a)

q

B + q
. (3.23)

It is readily seen that when a � 1
2 and B � q the desired conditions are met. �

4 Discussion

We have shown here that for the disordered ferromagnetic q-state Potts model on Z
2 at

points of self–duality there is no percolation for any amalgamation of q − 1 components
in the unique translation invariant mixing measure QF . This transpires despite the fact that
the density of these combined q − 1 states is 1 − q−1 which will be arbitrary close to 1
as q → ∞. Of course we expect that the above holds at all critical points of these models.
In particular, we suppose, on general grounds, that the conditions of Theorem 3.1 (namely
no percolation and no dual percolation in the graphical representation) holds at any critical
point in a model of this sort.

It is further expected that as soon as the temperature is decreased below the critical
temperature or the overall interaction strength increased, the magnetization will rise con-
tinuously from zero. If this scenario is correct, i.e. if the magnetization (like the energy
density—which in this context may be taken to mean the bond density) is continuous for
this system, it would follow that in each of these states we would have percolation at a small
density.

Unfortunately, even aided with self–duality, we cannot make such an assertion. There
are however some physical arguments supported by simulations which indicate that this
is indeed the case, see [9, 21] and references therein. We may use duality to prove the
weaker assertion that the magnetization is not already positive at a self–dual point (cf. the
discussion in [6]). Indeed, this would imply the identical circumstance in the dual model—
with appropriately modified boundary conditions—and the latter would be a non–percolative
state from the perspective of the direct model which would mean the existence of two states
with differing energy density which is ruled out by the result of [2]. More succinctly, there
cannot be a point where the model exhibits a percolative and a non-percolative state—so
the magnetization indeed vanishes at a self–dual point. But this does not quite rule out the
possibility of an interval of critical behavior—with vanishing magnetization—surrounding
a self–dual point with a discontinuity in the magnetism at the endpoint and no coexisting
non-percolative state at the point of discontinuity.

Trivial examples of discontinuous order parameters coinciding with critical transitions
are abundant in short–range 1D systems at zero temperature e.g. the Ising model. The en-
ergy is continuous as T ↓ 0 but m(0) = 1. More intricate examples can be found, here we
mention two. First there is the (reinterpretation of the) mean–field k-core transition [25]
where, in the presence of two distinct divergent length scales—and susceptibilities—there
is a discontinuity in the order parameter. Second, we mention the well known Thouless ef-
fect [27] for the 1D Ising model with ferromagnetic pair–interactions that decay like the
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inverse square of the separation. Here, as was proved in [5], the magnetization is discontin-
uous at the transition point but this point is critical in the sense of a divergent length scale, a
divergent susceptibility and, it is presumed, a continuous energy density. It is interesting to
note that, from the low temperature side, this transition is indeed the endpoint of a critical
phase [10, 20].

In this note we have circumvented these mathematical intricacies and demonstrated per-
colation at small densities by considering dilute and “nearly dilute” models. In the for-
mer case, the magnetization is always small and in the latter case, it is demonstratively
small in the vicinity of the critical point. This certainly does not settle the issue of mag-
netic/percolative continuity in these models, but it does, perhaps, bring us a small step closer.
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Appendix

Proof of Proposition A1 The first crucial ingredient in what is to follow is monotonicity
of the associated (fixed coupling) random cluster measures in finite volume. In particular,
if 	1 ⊃ 	2 and we compare the wired measure on 	1 with (the restriction of) the wired
measure in 	2—with the same Ji,j ’s in the common territory—then the smaller system
FKG–dominates (meaning that both measure are FKG and satisfy the stated stochastic dom-
ination). For free measures the situation is similar only the domination goes the other way.
The second ingredient is that expectations of spin–functions may be expressed as expec-
tations of random cluster functions which may be easily decomposed into increasing and
decreasing functions. For example if A1 ⊂ Z

2 denotes a finite set and 1A1 denotes the indi-
cator of the event that all spins on A1 are of type one, it is not hard to see [5] that

E
[f ]
J;	(1A1) = E[f ]

J;	(q−K(A1)), (5.1)

where K(A) is the number of distinct components that intersect A. Observing that K(A1)

is a decreasing function (and that 1/q is less than one) the right hand side of (5.1) is the
expectation of an increasing function. Notice then that monotonicity immediately implies
the existence of a limiting probability for this particular cylinder, independently of how the
	’s go to Z

2.
For multiple sets, the situation is only slightly more complicated. E.g. consider 1A1 1A2

(where 1A2 is the indicator of the event that all spins in A2 are of type two). Here, the product
of the two appropriate random cluster functions is almost the right answer except we must
insist that there is no connection between A1 and A2 since the latter would demand that some
sites in A1 would take the same spin–value as sites in A2. However, this constraint may be
written as 1 − 1{A1↔A2} and, we are again in a situation where we may analyze (sums and
differences of) increasing functions. The general formula for arbitrary cylinder function is
seen to be

E
[f ]
J;	

(
q∏

j=1

1Aj

)

= E[f ]
J;	

(

q−(
∑

j K(Aj ))
∏

j �=k

[1 − 1{Aj ↔Ak}]
)

(5.2)
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and we may use monotonicity in volume to demonstrate the existence of a limiting free
measure independent of how the limit is taken.

For the [1] boundary conditions, the overall situation is similar with just a couple of
modifications that need to be made. The first difference is that now the sets A2, . . . ,Aq

must not be allowed a connection to the boundary hence the function in (5.2) is be modi-
fied by the insertion of the product

∏
j>1[1 − 1{Aj ↔∂	}]. The second adjustment concerns

the interpretation and counting of the number of clusters intersecting the set A1. Clearly
any sites in A1 that are connected to the boundary are “already” in the 1–state and, need-
less to say are considered part of the same cluster. Thus, q−K(A1) must be replaced by
q−KW (A1)[1{A1↔∂	}c +q1{A1↔∂	}] where KW denotes the number of clusters counted accord-
ing to the wired rules. Note that the second factor may be rewritten as [1 + (q − 1)1{A1↔∂	}]
which, along with q−KW (A1), is manifestly increasing. Moreover, the (increasing) connec-
tivity events {Aj ↔ ∂	} have the property that if 	 ⊃ 	′ then {Aj ↔ ∂	} ⊂ {Aj ↔ ∂	′}
which is in accord with the decreasing tendency of the measures in increasing volume. Thus,
a limit emerges again by means of monotonicity properties.

It is clear that both of the limiting measures are translation invariant—as well as enjoying
all other Z

2–symmetries. For example if BA is a local event which depends only on the spins
in A and T is some Z

2 translation, it is manefest that

Q
[f ]
F,T(	)(BT(A)) = Q

[f ]
F,	(BA). (5.3)

However, by the existence of limiting measure (independent of how 	 ↗ Z
2) the left hand

side converges to Q
[f ]
F (BT(A)) while the right side tends to Q

[f ]
F (BA) which is the desired

invariance. Other invariance properties and these properties for the other measure follow
from an identical argument. The claims of Proposition A1 are all established. �

Proof of Proposition A2 We start with a proof of the second statement (uniqueness of the
quenched measure if the magnetization vanishes) since we will use these arguments in the
subsequent proofs. We consider a sequence of volumes (	) with boundary conditions which
may depend (measurably, of course) on J. Now with J fixed, the measure obtained by any
particular spin–configuration at the boundary will lead to some form of a random cluster
measure. The details need not concern us here except to say that all such measures (and
therefore combinations thereof) are dominated by the wired measure. We again consider
some local spin–function which we decompose into a sum of monotone random cluster
functions. We let V1 ⊂ V2 ⊂ 	 with V2 large compared to V1 and 	 much larger still. Since
the magnetization vanishes, using the argument of Proposition 3.5 we are assured, even for
wired boundary conditions on 	, that a circuit of dual bonds separates ∂V1 from ∂V2 with
probability tending to one as V2 gets large. This is a negative (decreasing) event so the
statement also holds in the measure coming from the arbitrary boundary condition—which
we now permit to tend to an infinite volume limit in any fashion. But meanwhile in the
vicinity of V1 and V2, as far as the random cluster problem is concerned, the situation inside
the outermost ring separating ∂V1 from ∂V2 is equivalent to free boundary conditions on
this ring. Of course the statistics of the location of such a ring will depend in detail on J

but given such a ring, the conditional measure inside V1 is dominated by the one with free
boundary conditions on V2 and dominates the one with free boundary conditions on V1. The
conclusion is that with large probability the random cluster expectations lie between the free
boundary condition problems on V1 and V2 and we may safely take quenched averages. By
allowing V2 and then V1 to exhaust Z

2 we have proved any infinite volume measure is the
same as the limiting infinite volume free measure.
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To prove the first statement, let us distinguish two cases depending on the vanishing
or non–vanishing of the spontaneous magnetization. When there is no magnetization, the
argument is only a slight reworking of the discussion in the previous paragraph. First, by
appealing to stochastic (FKG) monotonicity in volume, arguments similar to ones already
used show that for a.e. J, the limiting μJ is unique, independent of how the limit is taken, etc.
(Thus, we are technically proving a stronger result than the one claimed.) So, in particular,
for a.e. J, the infinite volume measure may as well be considered as the limit of measures
constructed in finite volume with free boundary conditions. Now consider, for fixed J, the
thermal average of some local spin event A. As before, this may be expressed as a sum
involving expectations of increasing random cluster functions. Let V1 denote a large vol-
ume which contains the support of the spin function and V2 containing V1 larger still. With
the vanishing of the (quenched) magnetization, again using the arguments in the proof of
Proposition 3.5, we are assured that with high probability (in the random–coupling/random
cluster joint measure) there is a dual ring of vacant random cluster bonds separating the
boundaries of the V ’s; in particular, with probability tending to one as V2 tends to Z

2. This
accomplishes two tasks: first it establishes J–measurability of these thermal expectations
and second it shows that their quenched average is close to the finite volume quenched aver-
age with various free boundary conditions. By allowing the volumes to exhaust Z

2 we have
established interchangeability of the two limiting procedures.

When the magnetization does not vanish, the argument is somewhat more intricate. To
start off, we again claim that for fixed J, various infinite volume measures exist. In particular,
here we will be interested in the limiting wired and free random cluster measures, P[w]

J
and

P[f ]
J

that emerge from sequences of the corresponding finite volume measures. Furthermore,
we will have brief need to refer to the quenched limiting random cluster measures that arise
from these boundary conditions.

Let Vk denote any standard sequence of volumes tending to Z
d , e.g. nested squares cen-

tered at the origin. Let �k denote the event that there is a ring of dual bonds separating ∂Vk

from infinity. Finally, let � denote the event that infinitely many of the �k–events occur. We
claim that if the magnetization is positive, then the set {J | P[w]

J
(�) �= 0} has F -probability

zero. Indeed, let us first establish that this event is a tail event. Foremost, it is manifestly
shift–invariant. Next, supposing that J is such that P[w]

J
(�) �= 0, let us demonstrate that

P[w]
J′ (�) �= 0 if J and J

′ differ at only a finite number of bonds. This follows easily since,
if D is a finite set of bonds and J = J

′ on Dc , then for any fixed configuration on D, the
conditional measures agree. Therefore, letting D denote the set where J and J

′ disagree and
letting D∅ denote the event that all bonds of D are vacant, we have

P[w]
J′ (�) ≥ P[w]

J′ (D∅)P[w]
J′ (�|D∅) = P[w]

J′ (D∅)P[w]
J

(�|D∅) ≥ P[w]
J′ (D∅)P[w]

J
(�), (5.4)

where the last inequality is by the FKG property. Noting that by (3.12) and (3.13), P[w]
J′ (D∅)

is not zero (even in the dilute case) the claim follows. So now we must rule out the possi-
bility that {J | P[w]

J
(�) �= 0} has F -probability one. Assuming that this is the case, let us

demonstrate the implication that there is no percolation in the random cluster version of the
quenched free measures. To this end, let �� denote the event that a separating ring occurs
inside V�. Under our assumption we have, for almost every J,

lim
�→∞

P[f ]
J

(��|�) ≥ P[w]
J

(��|�) = 1. (5.5)

Letting ε ∈ R
+ there is therefore a (random) � such that

P[f ]
J

(��|�) ≥ 1 − ε (5.6)
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and while this � may have slow decay, it is clear that it is not defective. Thus, for any small
η, we may define an L0 such that � < L0 with F –probability in excess of 1 − η. However, it
is clear that for every J and any L and L′ with L′ > L,

P[f ]
J

(�L|�) = P[f ]
J

(�L|�L′) ≤ P[f ]
J,	L′ (�

L) (5.7)

because free boundary conditions enhance any decreasing event inside. Hence, for any se-
quence of volumes tending to infinity with free boundary conditions, the quenched proba-
bility that the origin is connected to ∂	L0 is less than ε +η; i.e. there is no percolation in the
limiting version of these measures. Meanwhile, there is percolation in the wired rendition
of this measure since, by hypothesis, the magnetization is positive. A priori the two mea-
sures are stochastically ordered and so, evidently, the ordering is strict. By (the corollary to)
Strassen’s Theorem, [26]—cf. the discussion in [22] on page 75—this implies that the one–
dimensional marginals, which here amounts to the translation invariant FK–bond density,
differ strictly. Back in the spin–system, by an argument to be found in [23]—presumably
known to others—an exact formula can be presented that relates the bond density in the
random cluster models to the energy density in the corresponding spin–system. The impli-
cation is a difference among states, (and hence a discontinuity) in the energy density. This
is forbidden by the result of [2] where it was shown that for the systems described by the in-
teraction in (3.1), the energy density is continuous. Thus, henceforth, we may safely assume
that with F –probability one, P[w]

J
(�) = 0.

Now consider a local spin function which, as before, may be expressed as a sum of terms
involving increasing random cluster functions. Notice that in this case, for the modification
of (5.2) discussed shortly after the display, the condition that certain sets must not be con-
nected to the boundary are now replaced by the condition that these sets are not connected
to the infinite cluster which is here identified as a cluster of spin–type 1. We may assume
the event �c so that if V1 (which contains the support of the spin function) is large, we are
assured that ∂V1 is connected to this infinite cluster with probability close to one. Further, if
V2 which contains V1 is sufficiently larger still, we may use the absence of dual percolation
to generate, with high probability, an additional circuit of occupied bonds separating ∂V1

from ∂V2. By courtesy of the infinite path emanating from ∂V1, any such ring represents,
from the perspective of the spin–system, sites which are a constant spin–value of 1. Thus,
by consideration of the measure conditioned on the outermost separating ring, we have that
with high probability, the random cluster functions have expectations which are bounded
between expectations in the wired measures on ∂V1 and the wired measure on ∂V2. And,
importantly, in both measures, the boundary conditions can be identified with spin boundary
conditions of the 1–type. The remainder of the proof now follows along similar lines as the
previous case. �

Proof of Proposition A3 Let f and � denote two local spin functions which are assumed to
be of the form appearing on the left hand side of (5.2). We let T denote some Z

2 translation
operator and, for notational simplicity, let g = T(�) denote the translated version of �. The
sets corresponding to g will be denoted by B1, . . . ,Bq and we will use A’s for the function
f . Since, eventually, |T| → ∞ it may be safely assumed that these A–sets and the B–sets
are all disjoint.

While the functions f and g individually admit an expansion as on the right hand side
of (5.2), the product of f and g does not expand into the product of the expansions. Indeed,
what we obtain is exactly the form of the expression in (5.2) with the sets Aj replaced by
Aj ∪ Bj . Because of these—and additional upcoming—difficulties, we shall segregate the
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high and low temperature cases (meaning vanishing or non–vanishing of the magnetization).
We start with the simpler case in which the magnetization vanishes and thence, according to
Proposition A2, we might as well assume that have constructed the limiting measure from
free boundary conditions.

Let V1 denote a box that contains all the A–sets and, as previously, V2 a much larger
box containing V1 with ∂V1 and ∂V2 well–separated. Similarly let V ′

1 and V ′
2 denote the

corresponding sets (with the similar characteristics) for the function g. It will be assumed
that T is large enough so that V2 and V ′

2 are disjoint. We let F and G denote the random
cluster expression for the functions g and f —i.e. the term inside the expectation on the
right side of (5.2)—and K the expression for the product fg. Consider the event R, that a
circuit of vacant bonds separates ∂V1 from ∂V2 and similarly for the event R′. It is claimed
that should both (or either) of these events occur then K indeed factors into FG, e.g.

K1R∩R′ = [F][G]1R∩R′ . (5.8)

Indeed, under this condition, there cannot be a connection between V1 and V ′
1 so we have

K(Aj ∪ Bj) = K(Aj) + K(Bj ) and similarly, the event {Ai ∪ Bi ↔ Aj ∪ Bj }c reduces to
{Ai ↔ Aj }c ∩ {Bi ↔ Bj }c.

The reader is reminded that the absence of magnetization implies that with high proba-
bility (with respect to the joint measure) such rings are likely to occur. If we therefore defer
attention from the unlikely event that either of these ring events fail, we are left, for fixed J,
with the random cluster expectation of a sum of the form

∑
i,j λi,jαiβj where the α’s and

β ′s are non-negative increasing random cluster functions—bounded by 1—and the λ’s are
of undetermined sign. Let us therefore consider, e.g. in free boundary conditions on some
much larger 	 containing all of the V ’s, the generic expectation E[f ]

J;	[(α)(β)(1R∩R′)]. On
the one hand,

E[f ]
J;	[(α)(β)(1R∩R′)] ≥ E[f ]

J;	[αβ] − PJ;	({R ∩ R′}c) (5.9)

and, in the above mentioned spirit, let us focus only on the first term. Using FKG,

E[f ]
J;	[αβ] ≥ E[f ]

J;	[α]E[f ]
J;	[β]. (5.10)

We must now perform the average over J of both sides. We claim that
∫

dF E[f ]
J;	[α]E[f ]

J;	[β] ≥
∫

dF E[f ]
J;	[α]

∫

dF E[f ]
J;	[β]. (5.11)

Indeed, the quantity E[f ]
J;	[α] is the random cluster expectation of an increasing function

which as is not hard to check, is an increasing function of J and we may again use the FKG
inequality because the independent measure enjoys this property.

On the other hand, we may take the expectation on the left side of (5.9) and expand
according to which pair of rings is the outermost pair in V2 \ V1, and, respectively, V ′

2 \ V ′
1.

Under this conditioning, the expectations are independent; both with regards to the fixed J

random cluster measures, where each of the factors behaves like the free boundary measure
at the respective conditioned rings, and with regards to the J’s because the regions of interest
are disjoint. Moreover, since α and β are increasing functions, the conditional expectations
are bounded above by the expectations with free boundary conditions on the boxes V2 and
V ′

2. Thus, all in all,

E[f ]
J;	[(α)(β)(1R∩R′)] ≤ PJ;	({R ∩ R′})E[f ]

J;V2
[α]E[f ]

J;V ′
2
[β] ≤ E[f ]

J;V2
[α]E[f ]

J;V ′
2
[β], (5.12)
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where the rightmost term stays factored in the quenched average (over J) due to the afore-
mentioned independence. In light of (5.11), (5.12) and their immediate consequences, the
individual pieces of the function have, after expectation, essential upper and lower bounds
in terms of the product evaluated in infinite volume. The original functions can then be re-
constituted and, as 	 and the V ’s tend to Z

2 (the latter as the magnitude of the translation
becomes large), we obtain the limiting equality

lim
|T|→∞

E
[f ]
F (f T(�)) − E

[f ]
F (f )E

[f ]
F (�) = 0. (5.13)

The case of the wired/type–[1] boundary conditions when the magnetization does not
necessarily vanish follows a similar tack but is somewhat more arduous. The setup is pretty
much the same as in the previous paragraphs: |T| is large, V1 and V ′

1 are large volumes
which contain the supports of the two functions and are, in turn, each contained in V2 and
V ′

2 which themselves are disjoint. All of this takes place in wired boundary conditions on a
volume 	 that is much larger still; the wired boundary conditions represent spins of type 1.
We will be considering the expectation of the random cluster function corresponding to the
product of the spin functions.

The important simplifying feature is that, with probability close to one, effective bound-
ary conditions will again isolate the two volumes. In particular consider the event, R̃, that
a circuit of occupied bonds separates V1 from ∂V2 and that this circuit is connected to ∂	;
similarly we define R̃′. We claim, on the basis of the arguments in the last two paragraphs
in the proof of Proposition A2 that

∫

Pw
J,	(R̃∩ R̃′)dF → 1 (5.14)

as first 	 and then the V ’s get large. Thus, for all intents and purposes, we may consider
the random cluster functions under the condition that R̃ ∩ R̃′ occurs. Noting that these
separating rings are part of the boundary cluster (and that we employ the low–temperature
modifications described shortly after (5.2)) we have, for i = 2, . . . , q

{Ai ∪ Bi ↔ ∂	}c ∩ (R̃∩ R̃′) = [{Ai ↔ ∂V2}c ∩ {Bi ↔ ∂V ′
2}c] ∩ (R̃∩ R̃′), (5.15)

where it has been observed that the under the ring condition, the relevant connections to ∂	

occur if and only if the connection to the boundary of the corresponding V2 or V ′
2 occurs.

Furthermore, among these sets, all disconnection provisos break down to conditions among
the A’s and B’s alone. I.e.

{Ai ∪ Bi ↔ Aj ∪ Bj }c ∩ (R̃∩ R̃′) = {Ai ↔ Aj }c ∩ {Bi ↔ Bj }c ∩ (R̃∩ R̃′), (5.16)

2 ≤ i, j ≤ q , i �= j . Thus as far as the indices 2 through q are concerned, under the con-
dition of the ring events, the function is already in product form. We finally turn attention
to the term involving the cluster content of A1 ∪ B1. Here it is claimed that with the “low
temperature modifications” discussed subsequent to (5.2) and the condition R̃ ∩ R̃′, this
term reduces to (q−KW (A1)[1 + (q − 1)1A1↔∂V2 ])(q−KW (B1)[1 + (q − 1)1B1↔∂V ′

2
]) i.e. this too

is in product form. The remainder of the proof is similar enough to previous derivations
that we need not spell it out in full detail. The key ingredients are the monotone decreasing
property of the wired boundary conditions for all increasing events and the fact (used earlier
in a related context) that the connections to increasing boundaries respect this direction of
monotonicity. E.g.

Pw
J,V1

({A1 ↔ ∂V1}) ≤ Pw
J,	({A1 ↔ ∂V2} | R̃∩ R̃′) ≤ Pw

J,V2
({A1 ↔ ∂V2}), (5.17)
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where the middle term pertains to conditioning on the “outermost ring” in the region
V2 \ V1. �

Corollary For all temperatures, spin functions of the form KA = ∏
i∈A 1σi=1 and positive

linear combinations thereof are positively correlated in the finite volume and infinite volume
[1]–quenched measures. Furthermore, the 1–state marginals of these measures conditioned
on J have positive correlations; i.e. these marginal measures have “conditional positive
correlations”. In particular, the above holds in the unique (free) measure associated with
the vanishing of the magnetization.

Proof For the type of cylinder function mentioned above, in above mentioned boundary
conditions the associated random cluster functions are actually increasing. Thus, using a
double FKG derivation as in (5.10–5.11), we have the positive correlations. The second
statement, while not particularly trivial, was proved in [11] (first Lemma) and generalized
in [18]. �
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